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Resumo

Uma função pseudo-aleatória constrangida é uma função pseudo-aleatória (PRF) que permite derivar

chaves constrangidas a partir da chave mestra. Cada chave constrangida está associada a um

constrangimento f e permite avaliar a PRF em pontos x satisfazendo fpxq “ 0, mas não dá qual-

quer informação sobre os valores da PRF nos pontos x tais que fpxq “ 1. Numa PRF constrangida

privada, as chaves constrangidas não revelam os constrangimentos que lhes correspondem.

Nesta tese consideramos o problema de construir uma PRF constrangida privada tal que o tamanho

das chaves constrangidas seja independente dos constrangimentos que lhes correspondem. Mostramos

que isto é possível quando usamos uma definição generalizada de PRF constrangida, segundo a qual

os parâmetros públicos podem ser atualizados sempre que é gerada uma chave. Propomos duas

construções distintas que cumprem este objetivo, partindo de uma PRF constrangida privada e

usando como ferramentas as primitivas criptográficas attribute-based encryption e functional

encodings, respetivamente. A sua segurança baseia-se na dificuldade do problema learning with

errors, que está relacionado com problemas em reticulados muito estudados e para os quais não se

conhecem algoritmos eficientes.

Palavras-chave: criptografia em reticulados, learning with errors, função pseudo-aleatória

constrangida, constrangimentos privados, parâmetros atualizáveis.
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Abstract

A constrained pseudorandom function is a pseudorandom function (PRF) in which constrained keys

can be derived from the master secret key. Each constrained key is associated with a constraint f and

allows its user to evaluate the PRF at points x satisfying fpxq “ 0, but gives no information about the

PRF values at points x such that fpxq “ 1. In a private constrained PRF, constrained keys do not reveal

their corresponding constraints.

In this thesis we consider the problem of building a private constrained PRF in which the size of the

constrained keys is independent of the constraints. We show that this is possible to achieve under a

generalized definition of constrained PRF, in which the public parameters may be updated whenever a

key is generated. We provide two distinct constructions that fulfill these requirements, starting from a

private constrained PRF and using as tools the cryptographic primitives of attribute-based encryption

and functional encodings, respectively. Their security is based on the hardness of the learning with

errors problem, which is related to the intractability of well-studied problems on lattices.

Keywords: lattice cryptography, learning with errors, constrained pseudorandom function, pri-

vate constraints, updatable parameters.
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Chapter 1

Introduction

Many cryptographic protocols used in practice today are vulnerable to attacks by quantum algorithms.

Most notably, the security of many cryptosystems relies on the computational hardness of number-

theoretic problems such as integer factorization or the discrete logarithm, which are efficiently solved

by Shor’s algorithm [Sho97]. Widely used public-key cryptosystems, such as RSA, are among those

susceptible to quantum attacks.

Quantum attacks on cryptosystems cannot currently be realized because quantum computers with

sufficient processing power do not exist. However, there has recently been an increasing investment in

the development of this technology and it is generally believed that large-scale quantum computers will

become a reality in the near future. The threat of the emergence of quantum computers has sparked a

large interest in post-quantum cryptography, the field of research concerning cryptosystems with secu-

rity against quantum attacks. For instance, the National Institute of Standards and Technology (NIST) is

currently conducting their program Post-Quantum Cryptography Standardization, a process to standard-

ize quantum-resistant public-key cryptosystems, in which the majority of submissions were lattice-based

systems.

Lattice cryptography is the study of cryptographic protocols provably secure under the assumption

of intractability of certain computational problems on lattices. Such problems are conjectured to not be

efficiently solvable by classical or quantum algorithms, making these systems quantum-resistant. But

security against quantum attacks is not the only noteworthy quality of lattice cryptography. The problem

of building fully-homomorphic encryption, a powerful cryptographic primitive which allows computation

over encrypted data, remained largely unanswered for thirty years until the work of Gentry [Gen09],

which used lattices to give the first candidate construction based on cryptographic assumptions. Lat-

tice cryptography has provided the first (and, in some cases, all) constructions of this and other useful

cryptographic primitives such as attribute-based encryption for arbitrary constraints [GVW13] or indis-

tiguishability obfuscation [GGH`13]. Moreover, lattice-based protocols are generally simple, efficient

and parallelizable. The cryptographic protocols studied in this thesis rely on the hardness of the learning

with errors (LWE) problem for their security. LWE was introduced by Regev [Reg05] and is a computa-

tional problem related to lattices with wide application in cryptography.
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The subject of this thesis is the cryptographic protocol known as private constrained pseudorandom

function. A pseudorandom function (PRF) [GGM86] is a keyed function such that, for a random key,

its outputs are indistinguishable from those of a truly random function. In a constrained pseudorandom

function (CPRF) [BW13, KPTZ13, BGI14], the owner can delegate constrained keys which allow other

parties to evaluate the PRF. However, each key is associated with a constraint (a predicate over the

domain of the PRF) and only evaluates the PRF correctly at points which satisfy that constraint.

A CPRF is said to be private (or constraint-hiding) [BLW17] if the constrained keys reveal no infor-

mation about the corresponding constraints. Constructions of private CPRFs for different classes of

constraints have been proposed, including for point-functions [BKM17], for constraints in NC1 [CC17],

and for all polynomial-size circuits [BLW17, BTVW17, PS18]. All of these are based on LWE, with the

exception of [BLW17], which requires the powerful cryptographic primitive of indistinguishability obfus-

cation [BGI`12] and is also the only one that achieves collusion resistance.

A desirable property for CPRFs is that the constrained keys are short. Ideally, the size of such a key

should be (asymptotically) independent from the constraint that is associated to it – when this is the case

we say that the keys are succinct. An example of this is the LWE-based CPRF proposed by Brakerski

and Vaikuntanathan [BV15], which has succinct constrained keys. However, the problem appears to be

harder when we move from standard CPRFs to private CPRFs.

Our main contribution is a private CPRF with succinct keys for the constraint class of all polynomial-

size circuits (with bounded depth). We provide two different constructions matching this description,

both of which build upon a private CPRF [BTVW17] which supports the same constraint class, but in

which the keys are not succinct. The first relies on the internal structure of this private CPRF and on

the use of attribute-based encryption with short keys [BGG`14]. The second uses functional encodings

[WW21] and a private CPRF as a black box. We do not know of any previous private CPRF construction

with succinct constrained keys.

There is a caveat to our results – in order to achieve the property of succinct keys, we resorted to a

generalized definition of constrained PRF. In this new notion, which we call CPRF with updatable param-

eters, the public parameters of the scheme can be updated whenever a constrained key is generated

(this is equivalent to generating both a public and a private constrained key). We argue that little is lost

by considering this definition, as it is a simple and intuitive generalization and it can still be used in all

applications of private CPRFs that we are aware of.

In terms of security, both of our constructions satisfy essentially the same definition as the underlying

private CPRF, which is single-key selective security. This means that the scheme is resistant against

an adversary that has access to only one constrained key, chosen at the start of the security game.

While this is a relatively weak notion, there are indicators that achieving stronger security is substan-

tially harder. For instance, it has been shown that a 2-key secure private CPRF implies the existence of

indistinguishability obfuscation [CC17] and that a certain simulation-based definition of full (or adaptive)

security is impossible to obtain [BKM17]. We define two generalizations of single-key selective secu-

rity for CPRFs with updatable parameters. Our first construction satisfies only the weaker of the two

definitions, while the second satisfies both.
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The thesis is structured as follows.

In Chapter 2 we formally define CPRFs and private CPRFs. We also define CPRFs with updatable

parameters and present some applications of private CPRFs with succinct keys.

Chapter 3 is dedicated to the private CPRF scheme of Brakerski, Tsabary, Vaikuntanathan, and

Wee [BTVW17], which is the starting point for our proposed protocols. We start by giving some back-

ground on lattice-based cryptography and then, after presenting the necessary tools, we describe their

construction.

Our two proposed private CPRF schemes are presented in Chapters 4 and 5. We describe each of

them in detail and prove that they are correct, secure and have succinct constrained keys. Our main

results are Theorems 4.4.2 and 5.5.3.

Finally, in Chapter 6 we briefly discuss the obtained results and suggest some possible directions for

future work.
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Chapter 2

Constrained pseudorandom functions

We begin by establishing some notation that will be used throughout the thesis. If χ is a probability

distribution over a set X, the expression x Ð χ denotes that x is a random variable with distribution χ,

and, when X is finite, x Ð X denotes that the distribution of x is the uniform distribution on X. If Alg

is a probabilistic algorithm, y Ð Algpxq indicates that y is a random variable distributed according to the

output of Alg on input x. For a variable x considered as the input or output of some algorithm, |x| denotes

its size in bits. The expression polyp¨q denotes any polynomial function; for instance, fpnq ď polypnq

means that f is bounded by some polynomial. Likewise, neglp¨q denotes a negligible function: a function

f such that, for any positive polynomial p, fpnq ď 1
ppnq for sufficiently large n. We use the standard

asymptotic notation Op¨q and its variant Õp¨q which ignores logarithmic factors in the indicated variable.

The expression log always denotes the logarithm in base 2. For a real number x, we denote by

rxs the smallest integer that is greater than or equal to x, and by txs “ rx ´ 1
2 s the integer closest to

x. For a natural number q, the symbol Zq represents the ring of integers modulo q. We also define

rns “ t1, 2, . . . , nu. If A1,A2 are matrices, rA1 |A2s denotes their horizontal concatenation and
`

A1

A2

˘

their vertical concatenation. We denote by }v}2 the Euclidean norm of a vector v and by }A}8 the

largest absolute value of the entries of a matrix A.

2.1 Pseudorandom functions

A pseudorandom function (PRF) with key space K, domain X and range Y (where the size of these sets

may depend on the security parameter λ) is an efficiently computable function F : K ˆ X Ñ Y. The

security requirement, called pseudorandomness, is that, for a uniform k Ð K, the outputs of the keyed

function F pk, ¨q are computationally indistinguishable from the outputs of a uniformly chosen function

from X to Y.

Pseudorandom functions were introduced by Goldreich, Goldwasser and Micali [GGM86], who

showed that they can be built from one-way functions. They have a wide array of applications and

commonly serve as building blocks for more complex cryptographic protocols.
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2.2 Constrained pseudorandom functions

In a constrained pseudorandom function (CPRF), the owner of the master secret key can generate con-

strained keys corresponding to constraints f : t0, 1uz Ñ t0, 1u. Such a key allows its holder to compute

the value of the PRF on points x P t0, 1uz such that fpxq “ 0, i.e. x satisfies f .1 Constrained PRFs

were proposed independently by Boneh and Waters [BW13], Kiayias, Papadopoulos, Triandopoulos,

and Zacharias [KPTZ13], and Boyle, Goldwasser, and Ivan [BGI14].

Following [BTVW17] and without loss of generality, we consider CPRFs with domain t0, 1uz, range

Zp and constraints represented by strings in t0, 1u`. All the CPRF constructions featured in this work are

for the class of all constraints computable by Boolean circuits of polynomial size and a priori bounded

depth t.

Definition 2.2.1 (Constrained PRF). A constrained pseudorandom function is a tuple pKeyGen,Eval,

Constrain,ConstrainEvalq of polynomial-time algorithms with the following syntax:

• KeyGenp1λ, 1`, 1z, 1tq is a probabilistic algorithm that receives as input the security parameter λ,

the maximum description length ` of constraint functions, their input length z and their maximum

depth t. It outputs a master secret key msk and public parameters pp.

• Evalpppmsk, xq is a deterministic algorithm that receives as input a key msk and a string x P t0, 1uz,

and outputs a value y P Zp.

• Constrainpppmsk, fq is a probabilistic algorithm that receives as input a key msk and a circuit f :

t0, 1uz Ñ t0, 1u. It outputs a constrained key ck.

• ConstrainEvalpppck, xq is a deterministic algorithm that receives as input a string x P t0, 1uz and a

constrained key ck. It outputs a value y P Zp.

Correctness. For any x P t0, 1uz and f P t0, 1u` such that fpxq “ 0,

Pr
“

Evalpppmsk, xq “ ConstrainEvalpppck, xq
‰

ě 1´ neglpλq,

where pmsk, ppq Ð KeyGenp1λq, ckÐ Constrainpppmsk, fq and the probability is taken over the random-

ness of KeyGen and Constrain.

A constrained PRF is secure if it is pseudorandom at constrained points. This means that a key

corresponding to a constraint f gives no information about the PRF output at input points that do not

satisfy f .

A stronger form of this protocol, named private constrained pseudorandom function, was introduced

by Boneh, Lewi and Wu [BLW17]. These have the additional security requirement of constraint hiding

(or privacy), which states that constrained keys should not reveal information about their corresponding

constraints.
1Since we are working with the CPRF of [BTVW17], we follow their convention of writing fpxq “ 0 when x satisfies f . Note

that this is contrary to the more common convention in which f is said to be satisfied if fpxq “ 1, but the two are equivalent.
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We consider the indistinguishability-based notion of single-key selective security for private CPRFs. It

comprises two properties, which we present separately for clarity, adapting the definition from [BTVW17].

A standard (i.e., non-private) CPRF is said to have single-key selective security if it satisfies only the first

property.

Definition 2.2.2 (Security). A constrained PRF pKeyGen,Eval,Constrain,ConstrainEvalq is a single-key

selective private constrained pseudorandom function if the following conditions hold:

• Pseudorandomness at constrained points. Consider the following game between a challenger

and a stateful probabilistic polynomial-time (PPT) adversary A:

1. A sends 1`, 1t and f P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq and ck Ð Constrainpppmsk, fq. It

flips a coin bÐ t0, 1u and sends ppp, ckq to A.

3. A can send queries x P t0, 1uz such that fpxq “ 1, with no value x queried more than once.

The challenger returns y “ Evalpppmsk, xq, if b “ 0, or y Ð Zp, if b “ 1.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

• Constraint hiding. Consider the following game between a challenger and a stateful PPT adver-

sary A:

1. A sends 1`, 1t and f0, f1 P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq and a coin b Ð t0, 1u. It gener-

ates ckÐ Constrainpppmsk, f bq and sends ppp, ckq to A.

3. A can send queries x P t0, 1uz such that f0pxq “ f1pxq, to which the challenger returns

y “ Evalpppmsk, xq.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

The first property in the security definition states that the output of the PRF on a point x is indis-

tinguishable from a random output, even for a holder of a constrained key for a predicate f such that

fpxq “ 1. The property of constraint hiding asserts that a constrained key ck does not reveal its corre-

sponding constraint f . We say that the quantity
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ in the above games is the advantage of

the adversary.

Succinct keys. We say that a constrained PRF has succinct keys if the size of each constrained key is

asymptotically independent of the size of the description of the constraint, depending only on the security

parameter λ. More specifically, the scheme has succinct keys if there exists a polynomial pp¨q such that,

for any polynomial `p¨q, if ck is a constrained key corresponding to f P t0, 1u`pλq, then |ck| ď ppλq for

sufficiently large λ.

7



2.3 Updatable parameters

We define a generalized notion of constrained PRFs, in which the public parameters are updated when-

ever a constrained key is generated.

Syntax. A constrained pseudorandom function with updatable parameters is a tuple of algorithms

pKeyGen,Eval,Constrain,ConstrainEvalq satisfying the conditions of Definition 2.2.1, with the following dif-

ference: the Constrain algorithm outputs a pair ppp1, ckq consisting of new public parameters pp1 and a

constrained key ck.

Correctness. Let f P t0, 1u`, pmsk, ppq Ð KeyGenp1λq, and ppp1, ckq Ð Constrainpppmsk, fq. Then

Evalpp1pmsk, xq “ Evalpppmsk, xq for any x P t0, 1uz. Moreover, if fpxq “ 0 then

Pr
“

Evalpp1pmsk, xq “ ConstrainEvalpp1pck, xq
‰

ě 1´ neglpλq,

where the probability is taken over the randomness of KeyGen and Constrain.

In the usual definition of a constrained PRF, the Constrain algorithm outputs only a constrained key.

This definition includes that notion as the particular case in which the public parameters are not updated,

i.e. pp1 “ pp. Note that in our constructions the updates are always incremental – if the parameters pp

are replaced by pp1, then pp1 contains all the information present in pp. Therefore this new notion could

equivalently be defined as a CPRF in which the constrained key is split into two parts: a private part

(which corresponds to the actual constrained key) and a public part (the additional information added to

the parameters).

When clear from the context, we will often omit the expression “with updatable parameters”. Note

that both of our proposed constructions, labelled SCPRF in Chapters 4 and 5, are private CPRFs with

updatable parameters.

Regarding the size of constrained keys, the main advantage of this new definition is that it allows

the Constrain algorithm to generate additional information that does not need to be succinct (because

it becomes part of the parameters) while still having succinct keys. However, we need a new security

definition that reflects the fact that the updated parameters are assumed to be public – otherwise any

CPRF could trivially be made into a succinct-key CPRF with updatable parameters by placing the old

constrained key in the updated parameters and letting the new constrained key be empty.

We define two different notions of security for private constrained PRFs with updatable parameters,

both of which generalize Definition 2.2.2. In the first, which we call weak security, the adversary has

access to updated public parameters that are generated for uniformly chosen constraints, unknown to

the adversary. This corresponds to a real-world adversary waiting for the parameters to be updated as

keys are generated for other users. It is a natural extension of Definition 2.2.2, in which there is no

collusion resistance.

Definition 2.3.1 (Weak security). A constrained pseudorandom function with updatable parameters

pKeyGen,Eval,Constrain,ConstrainEvalq is a weak single-key selective private constrained pseudorandom

function if the following conditions hold:

8



• Pseudorandomness at constrained points. Consider the following game between a challenger

and a stateful PPT adversary A:

1. A sends 1`, 1t and f P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq, ppp1, ckq Ð Constrainpppmsk, fq.

It flips a coin bÐ t0, 1u and sends ppp1, ckq to A.

3. In this phase A can send queries x P t0, 1uz such that fpxq “ 1 (with no value x queried

more than once), to which the challenger replies with y “ Evalpp1pmsk, xq, if b “ 0, or y Ð Zp,

if b “ 1. A may also request updated parameters, in which case the challenger samples

g Ð t0, 1u`, computes ppp1, ckgq Ð Constrainpp1pmsk, gq and sends the new parameters pp1 to

A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

• Constraint hiding. Consider the following game between a challenger and a stateful PPT adver-

sary A:

1. A sends 1`, 1t and f0, f1 P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq. It flips a coin b Ð t0, 1u and

sends ppp1, ckq Ð Constrainpppmsk, f bq to A.

3. In this phase A can send queries x P t0, 1uz such that f0pxq “ f1pxq, to which the challenger

replies with y “ Evalpp1pmsk, xq. A may also request updated parameters, in which case the

challenger samples g Ð t0, 1u`, computes ppp1, ckgq Ð Constrainpp1pmsk, gq and sends the

new parameters pp1 to A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

Our proposed private constrained PRF in Chapter 5 satisfies a stronger form of security, which we

define next. In this definition, the adversary can choose the constraints for which the challenger must

generate updated parameters. This is a natural strengthening of the previous definition, as in many

applications it may not be justified to assume that the distribution of constraints for which the parameters

are updated is uniform – it is likely that some constraints are much more probable than others, or it may

even be the case that a large portion of the possible constraints is meaningless and has probability zero.

Definition 2.3.2 (Strong security). A constrained pseudorandom function with updatable parameters

pKeyGen,Eval,Constrain,ConstrainEvalq is a strong single-key selective private constrained pseudoran-

dom function if the following conditions hold:

• Pseudorandomness at constrained points. Consider the following game between a challenger

and a stateful PPT adversary A:

9



1. A sends 1`, 1t and f P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq, ppp1, ckq Ð Constrainpppmsk, fq.

It flips a coin bÐ t0, 1u and sends ppp1, ckq to A.

3. In this phase A can send queries x P t0, 1uz such that fpxq “ 1 (with no value x queried more

than once), to which the challenger replies with y “ Evalpp1pmsk, xq, if b “ 0, or y Ð Zp, if

b “ 1. A may also query constraints g, in which case the challenger computes ppp1, ckgq Ð

Constrainpp1pmsk, gq and sends the new parameters pp1 to A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

• Constraint hiding. Consider the following game between a challenger and a stateful PPT adver-

sary A:

1. A sends 1`, 1t and f0, f1 P t0, 1u` to the challenger.

2. The challenger generates pmsk, ppq Ð KeyGenp1λ, 1`, 1z, 1tq. It flips a coin b Ð t0, 1u and

sends ppp1, ckq Ð Constrainpppmsk, f bq to A.

3. In this phase A can send queries x P t0, 1uz such that f0pxq “ f1pxq, to which the challenger

replies with y “ Evalpp1pmsk, xq. A may also query constraints g, in which case the challenger

computes ppp1, ckgq Ð Constrainpp1pmsk, gq and sends the new parameters pp1 to A.

4. A outputs a guess b1 P t0, 1u.

Then
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq for any adversary A.

As the names indicate, strong single-key selective security implies weak single-key selective security,

as shown below in Proposition 2.3.3. The converse is not true – in Section 4.5 we show that our first

construction of a private constrained PRF satisfies Definition 2.3.1 but not Definition 2.3.2.

Proposition 2.3.3. Let CPRF “ pKeyGen,Eval,Constrain,ConstrainEvalq be a strong single-key selective

private constrained pseudorandom function. Then CPRF is a weak single-key selective private con-

strained pseudorandom function.

Proof. The proof is straightforward. Let A be an adversary in the pseudorandomness game of Definition

2.3.1 and consider the following adversary A1 in the pseudorandomness game of Definition 2.3.2. A1

simulates all of the computations of A and its interaction with the challenger, with the exception that,

whenever A would request an update of the parameters, A1 instead samples g Ð t0, 1u` by itself and

requests updated parameters for g.

It is clear that A and A1 win their respective security games with the same probability. Since CPRF

satisfies strong single-key selective security, A1 has negligible advantage. Therefore any adversary A

against CPRF in the pseudorandomness game of Definition 2.3.1 has negligible advantage. The proof

that any adversary has negligible advantage in the constraint-hiding game is analogous. We conclude

that CPRF has weak single-key selective security.
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2.4 Applications

Private constrained pseudorandom functions have several applications, including constrained message

authentication codes, program watermarking schemes, searchable encryption, deniable encryption

[BLW17], as well as functional encryption and reusable garbled circuits [CC17]. In all of these the

property of succinct constrained keys is appreciated and the additional need to update the public pa-

rameters does not pose a problem. Below we present in detail two applications in which our proposed

private CPRFs would be useful.

2.4.1 Database with restricted access

Suppose that an institution wishes to publish an encrypted database and grant each employee (or au-

thorized user) access to certain sections of the database according to their position in the institution

hierarchy. Moreover, they want to limit the knowledge that each employee has about their own limits in

accessing the database. A possible solution is to employ a private constrained pseudorandom function

CPRF in the following way. Consider a symmetric-key encryption scheme SKE with key space equal to

the output space of CPRF. For each element xi of the database tx1, . . . , xNu, compute an encryption

yi “ SKE.EncpCPRF.EvalpK, iq, xiq, where K is the master secret key of CPRF. The encrypted database

ty1, . . . , yNu is made public, while the original database tx1, . . . , xNu is kept secret. Additionally, issue

for each employee a CPRF constrained key Kf corresponding to the constraint f that accepts an index

i if and only if the employee is authorized to access the value xi.

Now the employees can access the database by interacting with the server which stores it. An em-

ployee can send a query Q, to which the server replies with the list I of the indices i that are authorized

for the employee (i satisfies f ) and such that xi satisfies Q. Upon receiving I, the employee recovers

the relevant data values by computing xi “ SKE.DecpCPRF.ConstrainEvalpKf , iq, yiq for all i P I.

In this example, the constraint-hiding property of CPRF ensures that the employees do not know

beforehand which elements of the database they can access – only by interacting with the server can

they obtain more information about their limits. Note that the institution has complete freedom on what

queries are allowed and they can instruct the server to reject those that are not. If CPRF has succinct

keys, then the initial step of distributing constrained keys to all employees becomes much lighter and the

employees can store their personal keys more easily. There is a simpler alternative to this protocol, in

which the server responds to a query Q by simply sending the set X of elements of the database that

satisfy Q and that the employee is authorized to access. However, since the data values may be large,

the former approach has the significant advantage that I is generally much smaller than X.

2.4.2 Watermarking

A software watermarking scheme allows one to embed into a program some information, called a mark,

which cannot easily be removed without significantly altering the functionality of the program. In its

simplest form, a watermarking scheme for a circuit class C consists of two procedures: Mark, which
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receives as input a circuit C and outputs a marked circuit C̃, and Extract, which, given a circuit, outputs

either that it is marked or unmarked. The usual requirements are that C̃pxq “ Cpxq on all but a negligible

fraction of inputs x and that, given the marked circuit C̃, no adversary can produce an unmarked circuit

C˚ that correctly evaluates C on a significant fraction of inputs. There exist several constructions of

watermarking schemes for cryptographic programs, especially PRFs [CHN`16, KW19, YAYX20].

A stronger form of watermarking is message-embedding watermarking, in which the marking pro-

cedure receives as additional input a message, and the extraction procedure recovers the embedded

message from a marked program. Such a scheme is secure if no adversary can remove the mark or

modify the message on a marked program without damaging its functionality.

Quach, Wichs and Zirdelis [QWZ18] proposed a message-embedding watermarking scheme for

PRFs which features a private constrained PRF as one of its main components, in addition to regular

PRFs and public-key encryption schemes. In this scheme, each marked or unmarked circuit is repre-

sented by a key which allows its computation. In the case of a circuit marked with a message µ, this

key is of the form K “ pkµ, c, sq, where kµ is a private CPRF constrained key for a constraint fµ, c is

a ciphertext and s is a PRF key. If we instantiate this scheme with a private CPRF with succinct keys,

such as one of the constructions proposed in this thesis, the size of the key kµ would be independent of

the size of the message µ, thus reducing the overall size of the description K of the circuit. Moreover,

the watermarking system can easily be adjusted to allow the private CPRF parameters to be updated,

as required by our schemes. However, the size of c is linear in the size of µ and therefore, despite this

improvement, the size of K remains asymptotically linear in the size of the embedded message.

12



Chapter 3

The BTVW private constrained PRF

In this chapter we present the main building block of our constructions, which is the private CPRF of

Brakerski, Tsabary, Vaikuntanathan, and Wee [BTVW17].1 Note however that a deep understanding of

this private CPRF is not at all necessary in order to understand our schemes. We begin by introducing

some background on lattices and the learning with errors problem, followed by two fundamental tools for

the private CPRF construction, and finally the description of the private CPRF.

3.1 Lattices and learning with errors

An n-dimensional lattice L is a discrete additive subgroup of Rn. This means that every x P L has a

neighbourhood U in Rn such that U XL “ txu and that 0,x´y P L for all x,y P L. Every n-dimensional

lattice is of the form

L “ B ¨ Zk “

#

k
ÿ

j“1

zjbj : zj P Z

+

,

where B “ tb1, . . . ,bku is a set of linearly independent vectors in Rn. Reciprocally, any set of the

above form is a lattice. We say that B is a basis of L and k is the rank of L, which is independent

from the choice of basis. A lattice is said to be full-rank if k “ n. The i-th successive minimum λipLq,

for i “ 1, . . . , n, is defined as the minimum radius r such that there exist i linearly independent lattice

vectors of norm at most r. In particular, λ1pLq is the length of the shortest non-zero vector of L and is

called the minimum distance.

There are many important computational problems on lattices. Here we present two which are par-

ticularly relevant in cryptography due to their connection with the learning with errors problem. These

are both approximation problems and are parameterized by an approximation factor γ “ γpnq ě 1.

Definition 3.1.1 (GapSVPγ). The decisional approximate shortest vector problem GapSVPγ is the fol-

lowing: given a basis B of an n-dimensional lattice L such that either λ1pLq ď 1 or λ1pLq ą γpnq, decide

which is the case.

1In [BTVW17] two constructions of a private CPRF are proposed. In this thesis we present the first, which has the title “The
dual-use technique”, and we refer to that one only.
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Definition 3.1.2 (SIVPγ). The approximate shortest independent vector problem SIVPγ is the follow-

ing: given a basis B of a full-rank n-dimensional lattice L, determine a set ts1, . . . , snu of n linearly

independent lattice vectors such that }si}2 ď γpnqλnpLq for all i.

The learning with errors problem (LWE) was introduced by Regev [Reg05] and is the basis of many

cryptographic constructions. Below we formulate the decision version of LWE.

Definition 3.1.3 (LWE). Let n,m, q be positive integers and χ a probability distribution over Z. The

decisional learning with errors problem LWEn,m,q,χ is to distinguish the distributions

pA,AT s` eq and pA,uq,

where AÐ Znˆmq , sÐ Znq , eÐ χm and uÐ Zmq .

The following theorem relates learning with errors to worst-case lattice problems for which there are

no known efficient classical or quantum algorithms, namely the decisional approximate shortest vector

problem, GapSVPγ , and the approximate shortest independent vector problem, SIVPγ . This provides

the basis for the hardness of LWE to be accepted as a standard assumption in cryptography.

Theorem 3.1.4 ([Reg05, Pei09]). Let n P N, m “ polypnq, q ď 2polypnq, and let χ be the discrete

Gaussian distribution with parameter α q, where 2
?
n{q ď α ă 1. If there is an efficient algorithm that

solves LWEn,m,q,χ, then:

• There is an efficient quantum algorithm that solves GapSVPγ and SIVPγ on any n-dimensional

lattice, for some γ “ Õpn{αq.

• If in addition q ě Õp2n{2q, there is an efficient classical algorithm that solves GapSVPγ on any

n-dimensional lattice, for some γ “ Õpn{αq.

A classical reduction from LWE to GapSVPγ also holds for polynomial moduli q [BLP`13]. For more

information about computational problems on lattices and a general survey of lattice cryptography, see

[Pei16].

3.2 Homomorphic evaluation over matrices

Given positive integers n, q, we define the gadget matrix [MP12]

G “ In b g “ diagpg, . . . ,gq P Znˆnrlog qs
q ,

where g “ p1, 2, 4, . . . , 2rlog qs´1q and In P Znˆnq is the identity matrix. We denote by G´1 : Znq Ñ

t0, 1unrlog qs the function such that the i-th block of size rlog qs of G´1puq consists of the bits of the binary

decomposition of the i-th entry of u, and we extend G´1 to matrices by applying it column-wise. Then,

for any matrix A P Znˆkq , we have G ¨G´1pAq “ A.

We present in the following theorem the properties of the algorithms for evaluation of circuits over

matrices used in [BTVW17], which are based on the algorithms developed in [GSW13, BGG`14].
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Theorem 3.2.1. There exist efficient deterministic algorithms EvalF and EvalFX such that for all n, q, z P

N, for any matrices A1, . . . ,Az P Znˆn log q
q , for any Boolean circuit f : t0, 1uz Ñ t0, 1u of depth t and for

any x “ px1, . . . , xzq P t0, 1u
z, the following properties hold.

• The outputs Hf “ EvalFpf,A1, . . . ,Azq and Hf,x “ EvalFXpf, x,A1, . . . ,Azq are matrices in

Zzn log qˆn log q.

• }Hf }8, }Hf,x}8 ď pn log qqOptq.

• rA1 ´ x1G | . . . |Az ´ xzGs ¨Hf,x “ rA1 | . . . |Azs ¨Hf ´ fpxqG pmod qq.

3.3 Fully homomorphic encryption

A fully homomorphic encryption (FHE) scheme is a secure encryption scheme with an additional algo-

rithm Eval, which receives as input a function f and a ciphertext ct encrypting a plaintext x and computes

a ciphertext encrypting fpxq. It has the following syntax:

• KeyGenp1λq receives as input the security parameter λ and outputs a secret key msk.

• Encpmsk, xq receives as input the key msk and a message x, and outputs a ciphertext c.

• Decpmsk, cq receives as input the key msk and a ciphertext c. It outputs either a message x.

• Evalpf, cq receives as input a function f and a ciphertext c. It outputs another ciphertext c1.

Correctness. For any message x, function f and mskÐ KeyGenp1λq,

Decpmsk,Evalpf,Encpmsk, xqqq “ fpxq.

The usual security requirement for FHE is IND-CPA security (see Section 5.1). However, we will not

directly analyze the security of any FHE system. Now we describe the variant of the FHE scheme of

Gorbunov, Vaikuntanathan and Wee [GSW13] that appears in the private CPRF scheme of Brakerski et

al. [BTVW17]. We present this scheme because in the next section some of its algorithms will be used

explicitly and others implicitly. The key generation, encryption, and decryption algorithms are as follows:

• KeyGenp1λq: Let sÐ Znq and output vT “ rsT | ´1s as the secret key.

• Encpv, µ P t0, 1uq: Write vT “ rsT | ´1s. Sample BÐ Znˆmq , RÐ t0, 1umˆm and eÐ χm. Output

the ciphertext

Ψ “

¨

˝

B

sTB` eT

˛

‚R` µG.

• Decpv,Ψq: Compute the inner product y “ xv, cy, where c is the penultimate column of Ψ, and

verify whether y is closer to 0 or to q ´ 2log q´1 modulo q. In the former case output µ “ 0 and in

the latter output µ “ 1.
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The homomorphic evaluation algorithm Eval is defined by the basic operations of addition and multi-

plication. The homomorphic addition of two ciphertexts Ψ1 and Ψ2 is defined as Ψ1 ` Ψ2 and their

homomorphic multiplication as Ψ1 ¨ G
´1pΨ2q. Observe that, when v and Ψ are generated as above,

rsT | ´1sΨ “ ´eTR ` µrsT | ´1sG « µrsT | ´1sG, which implies that in the decryption algorithm y «

´µ 2log q´1, justifying its correctness.

3.4 LWE-based private constrained PRF

Let FHE “ pFHE.Setup,FHE.Enc,FHE.Eval,FHE.Decq be the GSW fully homomorphic encryption scheme

[GSW13] and let EvalF, EvalFX be the algorithms of Theorem 3.2.1. The private constrained PRF

scheme BTVW of Brakerski, Tsabary, Vaikuntanathan, and Wee [BTVW17], supporting constraints com-

putable by circuits of polynomial size and bounded depth, consists of the following algorithms. We follow

the presentation of the original, except for the algorithm BTVW.Constrain, where we identify two subrou-

tines which will be used separately in our construction in the next chapter.

• BTVW.KeyGenp1λ, 1`, 1z, 1tq: The input parameters are the security parameter λ, the maximum

description length ` of constraint functions, their input length z and their maximum depth t.

Let L “ ` pn ` 1q2 log2 q. Sample B,B1, . . . ,BL Ð Znˆpn`1q log q
q , as well as C0,C1,D Ð Znˆmq

and sÐ Znq . Output

msk “ s, pp “
`

B, tBjujPrLs,C0,C1,D
˘

as the master secret key and public parameters, respectively.

• BTVW.Evalpppmsk, xq: Let Ux : t0, 1u` Ñ t0, 1u be the universal circuit that takes as input the

description of a function f and outputs fpxq. Consider the circuit pUx : t0, 1uL Ñ Znˆpn`1q log q
q ,

which takes as input a FHE encryption Ψ of the description of a function f and outputs Ψx, which

is the matrix obtained from Ψx “ FHE.EvalpUx,Ψq by removing the last row. Let also Txpy0, y1q

be the circuit that computes the product
ś

kPrzs yxk
through a balanced binary multiplication tree.

Compute

H
pUx
“ EvalF

´

pUx,B1, . . . ,BL

¯

,

B
pUx
“ rB1 | . . . |BLs ¨H pUx

,

Cx “ EvalF pTx,C0,C1q ,

Mx “ DG´1pCxq

and output

y “
Y

sTB
pUx
G´1pMxq

U

p
,

where the rounding operation t¨sp : Zq Ñ Zp, defined for p ă q by tksp “ tkp{qs, is applied

coordinate-wise.
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• BTVW.Constrainpppmsk, fq: Sample e0 Ð χpn`1q log q. Consider the following two subroutines, both

of which receive β P t0, 1u as one their inputs.

– BTVW.GenPpppmsk, e0, βq: Sample RÐ t0, 1upn`1q log qˆpn`1q log q. Output

Ψ “

¨

˝

B

sTB` eT0

˛

‚R` βG.

– BTVW.GenCpppmsk,A, βq: Sample eÐ χpn`1q log q. Output

cT “ sTpA´ βGq ` eT,

where G denotes the gadget matrix G P Zpn`1qˆpn`1q log q
q with its last row removed.

Let pf1, . . . , f`q be the description of f . Generate Ψi Ð BTVW.GenPpppmsk, e0, fiq for all i P r`s

and let pψ1, . . . , ψLq be the binary representation of Ψ “ rΨ1 | . . . |Ψ`s. For each j P L, generate

cj Ð BTVW.GenCpppmsk,Bj , ψjq.

Output ck “ pΨ, tcjujPrLsq as the constrained key.

• BTVW.ConstrainEvalpppck, xq: Parse ck “ pΨ, tcjujPrLsq. and define Ux, pUx,Mx as in the algorithm

BTVW.Eval above. Compute:

Ψx “ FHE.EvalpUx,Ψq,

H
pUx,Ψ

“ EvalFX
´

pUx,Ψ,B1, . . . ,BL

¯

,

c
pUx
“ rc1 | . . . | cLs ¨H pUx,Ψ

`Ψx.

Output

y1 “
Y

c
pUx
G´1pMxq

U

p
.

Theorem 3.4.1 ([BTVW17]). Under the LWE assumption, BTVW is a single-key selective private con-

strained pseudorandom function (as per Definition 2.2.2).
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Chapter 4

Succinct-key private constrained PRF

from attribute-based encryption

In this chapter we present our construction of a private constrained PRF scheme with succinct con-

strained keys. This scheme is based on the private constrained PRF of Brakerski, Tsabary, Vaikun-

tanathan, and Wee [BTVW17]. Our approach to reduce the size of the constrained keys using attribute-

based encryption is inspired by the techniques used by Brakerski and Vaikuntanathan [BV15] to adapt

their constrained PRF in order to have succinct keys.

4.1 Attribute-based encryption

Attribute-based encryption (ABE), first introduced by Sahai and Waters [SW05], is a generalization of

public-key encryption that allows multiple users to have different permissions to access encrypted data.

In the case of key-policy ABE, ciphertexts are associated to attributes and personal keys are associated

to constraints over the attribute space. A key corresponding to a constraint f is allowed to decrypt a

ciphertext with attribute x if and only if fpxq “ 0.1 There also exists ciphertext-policy ABE, in which

ciphertexts are associated to constraints and keys to attributes, but only the key-policy variant will be

considered in this work. There is an evident similarity between ABE and CPRFs – in a CPRF there are

constrained keys that control the access to PRF values, while in ABE constrained keys control the ability

to decrypt ciphertexts.

A (key-policy) attribute-based encryption scheme is a tuple pSetup,Constrain,Enc,Decq of PPT algo-

rithms with the following syntax:

• Setupp1λq receives as input the security parameter λ and outputs a secret key msk and a public

key pk.

• Constrainpmsk, fq receives as input the secret key msk and a constraint f . It outputs a constrained

key ck.

1As in the context of CPRFs, we interpret fpxq “ 0 as f being satisfied by x.
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• Encppk, x, µq receives as input the public key pk, an attribute x and a message µ, and outputs a

ciphertext c.

• Decpck, cq receives as input a constrained key ck and a ciphertext c. It outputs either a message µ

or the symbol K.

Remark. The second algorithm in the definition of ABE is usually labelled KeyGen, but we renamed

it to Constrain to avoid confusion regarding the parallelism between ABE and CPRFs (in the usual

nomenclature, Setup in ABE is analogous to KeyGen in CPRFs, but KeyGen in ABE is analogous to

Constrain in CPRFs).

Correctness. For any attribute x, constraint f such that fpxq “ 0, and message µ,

Pr
“

Decpck, cq “ µ
‰

ě 1´ neglpλq,

where pmsk, pkq Ð Setupp1λq, cÐ Encppk, x, µq and ckÐ Constrainpppmsk, fq.

We consider the notion of selective security for ABE in the multi-message setting, which we define

next. This is equivalent to selective security for a single message.

Definition 4.1.1 (Selective security). Let pSetup,Constrain,Enc,Decq be an attribute-based encryption

scheme and consider the following game between a challenger and a stateful PPT adversary A:

1. A sends attributes x1, . . . , xk to the challenger.

2. The challenger generates pmsk, pkq Ð Setupp1λq, flips a coin bÐ t0, 1u and sends pk to A.

3. A can query predicates f such that fpxiq “ 1 for all i P rks, to which the challenger replies

with Constrainpmsk, fq. The adversary sends pairs of messages pµ0,1, µ1,1q, . . . , pµ0,k, µ1,kq to the

challenger.

4. The challenger sends tciuiPrks to A, where ci Ð Encppk, xi, µb,iq.

5. At this step A is allowed to make queries as in step 3. Finally, it outputs a guess b1 P t0, 1u.

We say that the ABE scheme is selectively secure if
ˇ

ˇPrrb1 “ bs´ 1
2

ˇ

ˇ “ neglpλq for any PPT adversary A.

For our construction we will need an ABE scheme with short constrained keys, such as the lattice-

based scheme of Boneh et al. [BGG`14].

Theorem 4.1.2 ([BGG`14]). Under the LWE assumption, there exists a selectively secure ABE scheme

for the class of depth-t circuits in which the constrained keys have size polypλ, tq, where λ is the security

parameter.

4.2 Succinct-key private constrained PRF

The starting point for this construction is the private CPRF of Brakerski, Tsabary, Vaikuntanathan, and

Wee [BTVW17], in which the first component of a constrained key is of the form pΨ1, . . . ,Ψ`q and each
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Ψi only depends on the i-th bit fi of the description of the constraint f . Relying on this fact, we encrypt

with ABE each Ψi for both the cases fi “ 0 and fi “ 1 and place those encryptions in the public

parameters. Then we give as the constrained key for our scheme an ABE constrained key that allows

the user to decrypt only the relevant ciphertexts in the parameters. A similar procedure applies to the

second component of the key. This technique has been used before by Brakerski and Vaikuntanathan

[BV15] to turn their construction of a standard CPRF into a CPRF with succinct keys. Additionally, we

permutate the aforementioned ciphertexts using bits d1, . . . , d` in order to keep the constraint hidden.

The additional information contained in the updated parameters allows the user to decrypt the correct

ciphertexts, despite this permutation.

Let ABE “ pABE.Setup,ABE.Enc,ABE.Constrain,ABE.Decq be an attribute-based encryption scheme

and let BTVW “ pBTVW.KeyGen, BTVW.Eval, BTVW.Constrain, BTVW.ConstrainEvalq be the private

constrained pseudorandom function scheme of [BTVW17]. Our succinct-key private constrained PRF

with updatable parameters SCPRF consists of the following algorithms.

• SCPRF.KeyGenp1λ, 1`, 1z, 1tq: The input parameters are the security parameter λ, the maximum

description length ` of constraint functions, their input length z and their maximum depth t.

Let pBTVW.msk,BTVW.ppq Ð BTVW.KeyGenp1λ, 1`, 1z, 1tq. Sample e0 and B1, . . . ,BL as in the

BTVW CPRF and then generate

Ψi,β Ð BTVW.GenPBTVW.pppBTVW.msk, e0, βq,

cj,β Ð BTVW.GenCBTVW.pppBTVW.msk,Bj , βq

for all i P r`s, j P rLs and β P t0, 1u, where the parameter L is set as in BTVW.KeyGen.

Set up independently two ABE schemes as follows: pABE.msk1,ABE.pk1q Ð ABE.Setupp1λq and

pABE.msk2,ABE.pk2q Ð ABE.Setupp1λq. Then sample d1, . . . , d` Ð t0, 1u and compute

ai,β Ð ABE.EncpABE.pk1,pi, βq,Ψi,β‘diq,

bj,β Ð ABE.EncpABE.pk2,pj, βq, cj,βq

for all i P r`s, j P rLs, β P t0, 1u. Output

msk “
`

BTVW.msk, tdiuiPr`s,ABE.msk1,ABE.msk2
˘

,

pp “
`

BTVW.pp, tai,βuiPr`s,βPt0,1u, tbj,βujPrLs,βPt0,1u,ABE.pk1,ABE.pk2
˘

as the master secret key and the public parameters, respectively.

• SCPRF.Evalpppmsk, xq: Output y “ BTVW.EvalBTVW.pppBTVW.msk, xq.

• SCPRF.Constrainpppmsk, fq: Let pf1, . . . , f`q be the description of f and u “ pu1, . . . , u`q “ pf1 ‘

d1, . . . , f`‘d`q. Compute Ψi Ð ABE.DecpABE.msk1,ai,ui
q for all i P r`s. Let ψ1, . . . , ψL be the digits
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of the binary decomposition of Ψ “ rΨ1 | . . . |Ψ`s and define the predicates

Φupi, βq “

$

’

&

’

%

0, if β “ ui

1, otherwise,

ΛΨpj, βq “

$

’

&

’

%

0, if β “ ψj

1, otherwise.

Let ABE.ck1 Ð ABE.ConstrainpABE.msk1,Φuq and ABE.ck2 Ð ABE.ConstrainpABE.msk2,ΛΨq. Out-

put ck “ pABE.ck1,ABE.ck2q as the constrained key and pp1 “ ppp, uq as the new public parameters.

• SCPRF.ConstrainEvalpp1pck, xq: Retrieve u from the public parameters. For each i P r`s, compute

Ψi “ ABE.DecpABE.ck1,Φu,ai,ui
q. Observe that the ABE constrained key for Φu allows the de-

cryption of ai,ui but not ai,1´ui . Let pψ1, . . . , ψLq be the binary decomposition of Ψ “ rΨ1| . . . |Ψ`s.

Compute cj “ ABE.DecpABE.ck2,ΛΨ,bj,ψj q for all j P rLs.

Output y “ BTVW.ConstrainEvalBTVW.ppppΨ, tcjujPrLsq, xq.

4.3 Proof of security

In this section we show that the construction presented above is correct and weakly secure, as per

Definition 2.3.1. Note that it supports the same class of constraints as BTVW, which is the set of

predicates computable by circuits of polynomial size and bounded depth.

Theorem 4.3.1 (Correctness). Suppose ABE is a correct attribute-based encryption scheme and BTVW

is correct. Then SCPRF is also correct.

Proof. Correctness of our scheme follows from the correctness of the ABE scheme and the BTVW

constrained PRF scheme. It is clear that Evalpp1pmsk, xq “ Evalpppmsk, xq for any x P t0, 1uz, since Eval

depends only on the parameters BTVW.pp. Let ck be a constrained key for a predicate f . By the

correctness of ABE, the decryption of ai,ui yields Ψi “ Ψi,fi for all i P r`s. Analogously, cj “ cj,ψj for

all j P rLs, where pψ1, . . . , ψLq is the binary decomposition of Ψ “ rΨ1| . . . |Ψ`s. Therefore pΨ, tcjuq is a

BTVW constrained key for f . For any x P t0, 1uz, we have

SCPRF.Evalpppmsk, xq “ SCPRF.ConstrainEvalpp1pck, xq

if and only if

BTVW.EvalBTVW.pppBTVW.msk, xq “ BTVW.ConstrainEvalBTVW.ppppΨ, tcjujPrLsq, xq.

Since BTVW is a correct constrained PRF, if fpxq “ 0 then the above equations hold with all but negligi-

ble probability.
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Theorem 4.3.2 (Pseudorandomness). Suppose ABE is a selectively secure attribute-based encryption

scheme and BTVW is pseudorandom at constrained points, as per Definition 2.2.2. Then SCPRF satis-

fies the pseudorandomness at constrained points property of Definition 2.3.1.

Proof. We divide the proof into two parts. In the first we show that, under the assumption of selective

security of the ABE scheme, the following security games are computationally indistinguishable.

Game 0. This is the original pseudorandomness security game of Definition 2.3.1 for our construction.

Game 1. This game is identical to the previous one, only with a change in the way in which the cipher-

texts tai,βu are generated. The challenger sets ai,1´ui
Ð ABE.EncpABE.pk1,pi, 1 ´ uiq,0q for all i P r`s,

where pu1, . . . , u`q “ pf1 ‘ d1, . . . , f` ‘ d`q and 0 represents the zero vector of appropriate size. The

remaining ciphertexts, namely those of the form ai,ui , are computed as usual.

Game 2. In this game the challenger computes bj,1´ψj
Ð ABE.EncpABE.pk2,pj, 1´ ψjq,0q for all j P rLs

before sending these ciphertexts to the adversary as part of the public parameters. Game 2 is otherwise

identical to Game 1, with the ciphertexts of the form bj,ψj generated as usual.

Claim 4.3.2.1. If ABE is a selectively secure attribute-based encryption scheme, then Game 0 and

Game 1 are computationally indistinguishable.

Proof. Let A be a PPT adversary in the experiment of distinguishing Game 0 from Game 1. At the start

of this experiment the challenger randomly chooses β Ð t0, 1u. The challenger and the adversary then

play Game 0, if β “ 0, or Game 1, if β “ 1. Finally, A outputs a guess β1 and wins if β1 “ β.

Given A we construct a PPT adversary B against ABE in the selective security game of Definition

4.1.1 as follows. B begins by running A, which replies with a constraint f P t0, 1u`. Then it generates the

public parameters pBTVW.pp, tbj,βu,ABE.pk2q, the secret key components pBTVW.msk, tdiu,ABE.msk2q

and computes tΨi,βu as in the SCPRF key generation algorithm. It also chooses bÐ t0, 1u uniformly.

The adversary B computes pu1, . . . , u`q “ pf1‘d1, . . . , f`‘d`q and sends to the ABE challenger the at-

tribute sequence tpi, 1´uiquiPr`s. After the challenger generates pABE.msk1,ABE.pk1q Ð ABE.Setupp1λq

and samples β Ð t0, 1u, B receives ABE.pk1 and it sends back the message pairs tpµ0,i, µ1,iquiPr`s given

by µ0,i “ Ψi,1´fi and µ1,i “ 0. It then receives ciphertexts ai,1´ui which encrypt either Ψi,1´fi or 0,

depending on the value of β.

Using the public key provided by the challenger, B computes ai,ui
Ð ABE.EncpABE.pk1,pi, uiq,Ψi,fiq.

Then it queries the ABE challenger on the constraint Φu. Since Φupi, 1 ´ uiq “ 1 for all i, the query

is allowed and the challenger must reply with a constrained key ABE.ck1. B generates ABE.ck2 as in

the SCPRF.Constrain algorithm and sends updated public parameters pp1 “ pBTVW.pp, tai,βu, tbj,βu,

ABE.pk1,ABE.pk2, uq and a constrained key ck “ pABE.ck1,ABE.ck2q to A.

If A issues a point query x, B uses BTVW.msk to compute and send the corresponding value y,

which is y “ BTVW.EvalBTVW.pppBTVW.msk, xq, if b “ 0, or y Ð Zp, if b “ 1. Whenever A requests new

parameters, B samples g Ð t0, 1u`, computes u1 “ pg1 ‘ d1, . . . , g` ‘ d`q and replies with ppp1, u1q. Once

A outputs its guess β1, B also outputs β1.
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The game that A plays has the distribution of Game 0 if β “ 0 and the distribution of Game 1 if

β “ 1. It follows that B wins against the ABE challenger with the same probability that A successfully

distinguishes the two games. By selective security of ABE, B has negligible advantage, hence A has

negligible advantage as well. �

Claim 4.3.2.2. If ABE is a selectively secure attribute-based encryption scheme, then Game 1 and

Game 2 are computationally indistinguishable.

The proof of Claim 4.3.2.2 is analogous to the proof of Claim 4.3.2.1, with the adversary B choosing

the attributes pj, ψjq and the messages µ0,j “ cj,1´ψj , µ1,j “ 0. It follows that Games 0 and 2 are also

indistinguishable under our security assumption for ABE. We now show that A has negligible advantage

in Game 2.

Claim 4.3.2.3. If the constrained PRF BTVW is pseudorandom, then the advantage of any PPT adver-

sary in Game 2 is negligible.

Proof. We show that, for any computational adversary A in Game 2, there exists an adversary B that

wins the pseudorandomness security game of the BTVW scheme with the same probability as A. We

define B as follows.

At the beginning of the game, the adversary B runs A and receives a constraint f P t0, 1u`, which

it forwards to the challenger. In the next step, B receives BTVW public parameters BTVW.pp and

a constrained key prΨ1 | . . . |Ψ`s, tcjuq from the challenger. Then it generates pABE.msk1,ABE.pk1q

Ð ABE.Setupp1λq, pABE.msk2,ABE.pk2q Ð ABE.Setupp1λq, samples d1, . . . , d` Ð t0, 1u and computes

the ciphertexts

ai,ui
Ð ABE.EncpABE.pk1,pi, uiq,Ψiq,

ai,1´ui Ð ABE.EncpABE.pk1,pi, 1´ uiq,0q,

bj,ψj
Ð ABE.EncpABE.pk2,pj, ψjq, cjq,

bj,1´ψj Ð ABE.EncpABE.pk2,pj, 1´ ψjq,0q,

where pu1, . . . , u`q “ pf1 ‘ d1, . . . , f` ‘ d`q and pψ1, . . . , ψLq is the binary representation of the matrix

Ψ “ rΨ1 | . . . |Ψ`s. Additionally, B generates ABE.ck1 Ð ABE.ConstrainpABE.msk1,Φuq and ABE.ck2 Ð

ABE.ConstrainpABE.msk2,ΛΨq as in the algorithm SCPRF.Constrain. Finally, B sends to A the updated

public parameters pp1 “ pBTVW.pp, tai,βu, tbj,βu, ABE.pk1,ABE.pk2, uq and the constrained key

pABE.ck1,ABE.ck2q.

In order to obtain the final guess of A, B must be able to reply to its queries. Whenever A queries

a point x P t0, 1uz, B makes that same query to the BTVW challenger. The challenger responds with

a value y, which B forwards to A as its reply. If the adversary A asks for an update of the public

parameters, B samples g Ð t0, 1u`, computes u1 “ pg1 ‘ d1, . . . , g` ‘ d`q and sends ppp1, u1q. Once A

halts and outputs a guess b1, B outputs b1 as well.
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Observe that B wins the pseudorandomness game against the BTVW protocol if and only if A wins

the game to which B challenged it, and that this game has the correct distribution of Game 2. By the

pseudorandomness property of the BTVW protocol, B has negligible advantage, hence A has negligible

advantage in Game 2. �

Since Game 0 is computationally indistinguishable from Game 2, we conclude that any PPT adver-

sary has negligible advantage in Game 0. Therefore SCPRF is pseudorandom.

Theorem 4.3.3 (Constraint hiding). Suppose ABE is a selectively secure attribute-based encryption

scheme and BTVW is constraint-hiding, as per Definition 2.2.2. Then SCPRF satisfies the constraint-

hiding property of Definition 2.3.1.

Proof. We show that the following security games are computationally indistinguishable.

Game 0. This is the constraint hiding security game of Definition 2.3.1 for the SCPRF protocol. The game

begins with the adversary A submitting two constraints f0, f1. Then the challenger samples b Ð t0, 1u

and sends to A updated public parameters pp1 and a constrained key ck, generated for f b according

to the algorithms SCPRF.KeyGen and SCPRF.Constrain. A performs additional computations, with the

possibility of sending queries x such that f0pxq “ f1pxq, to which the challenger responds with the value

of SCPRF at x, and of asking for updated public parameters for a random constraint g. Finally, A outputs

a guess b1.

Game 1. In this game the challenger sets ai,1´ui Ð ABE.EncpABE.pk1,pi, 1´ uiq,0q for all i P r`s, where

pu1, . . . , u`q “ pf
b
1 ‘ d1, . . . , f

b
` ‘ d`q. All else is as in Game 0, including the ciphertexts ai,1´ui

.

Game 2. Game 2 is identical to Game 1 except for the ciphertexts of the form bj,1´ψj , which are

computed as bj,1´ψj
Ð ABE.EncpABE.pk2,pj, 1´ ψjq,0q.

Claim 4.3.3.1. If ABE is a selectively secure attribute-based encryption scheme, then Game 0 and

Game 1 are computationally indistinguishable.

Proof. Let A be a PPT adversary in the experiment of distinguishing Game 0 from Game 1. At the start

of this experiment the challenger randomly chooses β Ð t0, 1u. The challenger and the adversary then

play Game 0, if β “ 0, or Game 1, if β “ 1. Finally, A outputs a guess β1 and wins if β1 “ β.

Given A we construct a PPT adversary B against ABE in the selective security game of Definition

4.1.1 as follows. B begins by running A, which replies with two constraints f0, f1 P t0, 1u`. Then it gener-

ates the public parameters pBTVW.pp, tbj,βu,ABE.pk2q, the components pBTVW.msk, tdiu,ABE.msk2q of

the secret key and computes tΨi,βu as in the SCPRF key generation algorithm. It also chooses bÐ t0, 1u

uniformly.

The adversary B computes pu1, . . . , u`q “ pf b1 ‘ d1, . . . , f
b
` ‘ d`q and sends to the ABE challenger

the attribute sequence tpi, 1 ´ uiquiPr`s. Once the challenger has sampled β Ð t0, 1u and generated

pABE.msk1,ABE.pk1q Ð ABE.Setupp1λq, B receives a key ABE.pk1 and then it sends the message pairs
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tpµ0,i, µ1,iquiPr`s given by µ0,i “ Ψi,1´fb
i

and µ1,i “ 0. It then receives ciphertexts ai,1´ui
which encrypt

either Ψi,1´fb
i

or 0, depending on the value of β.

Using the public key provided by the challenger, B computes ai,ui
Ð ABE.EncpABE.pk1,pi, uiq,Ψi,fb

i
q

and it also generates ABE.ck2 as in the SCPRF.Constrain algorithm. Then it queries the ABE challenger

on the constraint Φu. Since Φupi, 1´ uiq “ 1 for all i, the query is allowed and the challenger must reply

with a constrained key ABE.ck1. B sends updated public parameters pp1 “ pBTVW.pp, tai,βu, tbj,βu,

ABE.pk1,ABE.pk2, uq and a constrained key ck “ pABE.ck1,ABE.ck2q to A. Whenever A makes a valid

query x, B uses s to compute y “ BTVW.EvalBTVW.pppBTVW.msk, xq, which it sends as its reply. If A

requests updated parameters, B samples g Ð t0, 1u`, computes u1 “ pg1 ‘ d1, . . . , g` ‘ d`q and replies

with ppp1, u1q. Once A outputs its guess β1, B also outputs β1.

The game that A plays has the distribution of Game 0 if β “ 0 and the distribution of Game 1 if

β “ 1. It follows that B wins against the ABE challenger with the same probability that A successfully

distinguishes the two games. By selective security of ABE, B has negligible advantage, hence A has

negligible advantage as well.

�

Claim 4.3.3.2. If ABE is a selectively secure attribute-based encryption scheme, then Game 1 and

Game 2 are computationally indistinguishable.

The proof of Claim 4.3.3.2 is analogous to the proof of Claim 4.3.3.1, with the adversary B choosing

the attributes pj, ψjq and the messages µ0,j “ cj,1´ψj
, µ1,j “ 0. It follows that Games 0 and 2 are also

indistinguishable under our security assumption for ABE.

Claim 4.3.3.3. If BTVW is constraint-hiding, then any PPT adversary A has only negligible advantage

in Game 2.

Proof. Given an adversary A in Game 2, we build an adversary B against BTVW in the constraint hiding

game of Definition 2.2.2 as follows. As its first step, B runs A in order to obtain constraints f0, f1 P t0, 1u`,

which it forwards to the challenger. At this point the challenger secretly flips a coin bÐ t0, 1u and sends

public parameters BTVW.pp and a constrained key pΨ, tcjuq corresponding to f b. B samples uÐ t0, 1u`

and generates pABE.msk1,ABE.pk1q Ð ABE.Setupp1λq, pABE.msk2,ABE.pk2q Ð ABE.Setupp1λq. Then it

parses Ψ “ rΨ1 | . . . |Ψ`s, calculates its binary decomposition ψ1, . . . , ψL and computes

ai,ui
Ð ABE.EncpABE.pk1,pi, uiq,Ψiq,

ai,1´ui Ð ABE.EncpABE.pk1,pi, 1´ uiq,0q,

bj,ψj
Ð ABE.EncpABE.pk2,pj, ψjq, cjq,

bj,1´ψj Ð ABE.EncpABE.pk2,pj, 1´ ψjq,0q.

Using u and Ψ, B generates ABE constrained keys ABE.ck1 Ð ABE.ConstrainpABE.msk1,Φuq and

ABE.ck2 Ð ABE.ConstrainpABE.msk2,ΛΨq and it sends the SCPRF public parameters pp1 “ pBTVW.pp,

tai,βu, tbj,βu, ABE.pk1,ABE.pk2, uq and constrained key pABE.ck1,ABE.ck2q to A.
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For each query x that A makes, B forwards the query to the BTVW challenger and then forwards the

replied value y back to A. Whenever A requests an update of the parameters, B samples u1 Ð t0, 1u`

and responds with ppp1, u1q. Once A outputs a guess b1, B halts and outputs b1 as well.

Observe that in the game that A plays, as challenged by B, the vector u is uniformly sampled from

t0, 1u`, while in Game 2 it is computed as u “ pf b1 ‘ d1, . . . , f
b
` ‘ d`q, where d1, . . . , d` Ð t0, 1u. However,

since A does not have access to d1, . . . , d` or functions of it other than u, in both cases u is uniformly

distributed and independent from all else in the view of A. Analogously, in both games all the vectors

u1 generated as parameter updates are uniform and independent from everything in the view of A.

Therefore the game that A plays has the distribution of Game 2.

By the security of BTVW, B has negligible advantage in the constraint-hiding game. Since B wins

with the same probability with which A wins Game 2, A has negligible advantage in this game.

�

Finally, since Games 0 and 2 are computationally indistinguishable, from the last claim we conclude

that the advantage of any adversary in Game 0 is negligible and that SCPRF is constraint-hiding.

4.4 Size of constrained keys

We proceed to show that our scheme SCPRF has succinct keys when instantiated with the ABE scheme

of Boneh et al. [BGG`14], in which the key size depends only on the depth of the circuit that computes

a constraint.

Lemma 4.4.1. The constraints Φu and ΛΨ featured in the SCPRF.Constrain algorithm are computable

by circuits of depth Oplog `q and Oplogp` polypλqqq, respectively, where ` is the description length of the

constraint.

Proof. The circuit for Φu receives as input pi, βq, where β P t0, 1u and i P r`s is represented in binary

as ik . . . i1, with k “ rlog `s. With u hardcoded into it, the circuit computes ui through a binary tree with

k levels, as follows. On the first level it considers all the bits u1, . . . , u` (each corresponds to a node of

the tree) and selects and keeps one from each pair pu2j´1, u2jq according to the input bit i1, deleting the

other. If i1 “ 0 (i is even) then u2j is preserved, otherwise u2j´1 is kept (the j-th bit that survives can be

computed as pu2j´1 ^ i1q _ pu2j ^  i1q for each j). On the second level, it selects one from each pair

of remaining bits according to i2, and so on until it is left with only one bit, which is ui. Finally, the circuit

outputs ui ‘ β, which is equal to Φupi, βq.

The depth of this circuit is Opkq ` 1 “ Oplog `q. Analogously, there is a circuit that computes ΛΨ with

depth Oplog |Ψ|q “ Oplogp`n2 log2 qqq, where n, q are parameters of the BTVW private CPRF satisfying

n, log q “ polypλq.

From Theorem 4.1.2 and Lemma 4.4.1 we conclude that, when we use the ABE scheme of [BGG`14]

in our construction, we obtain a private CPRF with keys of size polypλ, log `q. It follows that there exists a
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polynomial pp¨q such that, for all polynomial values of `, the size of constrained keys is bounded by ppλq

for sufficiently large λ. From this observation and the results of the previous section we obtain the next

theorem, which is the main result of this chapter.

Theorem 4.4.2. Consider the SCPRF construction from Section 4.2 with the attribute-based encryption

scheme of [BGG`14] in place of ABE. Under the LWE assumption, SCPRF is a weak single-key private

CPRF with updatable parameters in which the constrained keys are succinct.

4.5 Separation between weak and strong security

Having proven that the constrained PRF presented in Section 4.2 has weak single-key selective security,

we now show that it does not have strong single-key selective security. This implies that, although strong

security implies weak security, the two notions are not equivalent.

In order to prove that this constrained PRF does not satisfy Definition 2.3.2, we present an attack in

which the adversary uses the ability to obtain updated parameters for a constraint of its choice to obtain

information about the circuit corresponding to its constrained key, thus breaking the constraint-hiding

property. Intuitively, the scheme fails to achieve the stronger variant of constraint-hiding because the

vector u which is added to the public parameters is a one-time pad encryption of the constraint f . When

the adversary in the security game asks for the updated parameters for a constraint g of its choice, this

is essentially a chosen plaintext attack, which breaks the one-time pad.

Theorem 4.5.1. Let SCPRF be the constrained pseudorandom function described in Section 4.2. There

exists a PPT adversary A that wins the constraint-hiding security game of Definition 2.3.2 against SCPRF

with probability 1.

Proof. We define A as follows. It selects any two constraints f0 and f1 that differ in the first bit, that

is, f0
1 ‰ f1

1 (for instance, f0 “ p0, . . . , 0q, f1 “ p1, . . . , 1q). In the query phase, after receiving public

parameters pp1 “ ppp, uq and a constrained key ck corresponding to f b, A requests an update of the pa-

rameters for the constraint g “ f0. Once the challenger replies with parameters ppp1, u1q, the adversary

A verifies if u11 “ u1 and, in that case, outputs b1 “ 0 as its guess. Otherwise, A outputs b1 “ 1.

In this interaction, the vectors u and u1 are computed by the challenger as u “ pf b1 ‘ d1, . . . , f
b
` ‘ d`q

and u1 “ pf0
1 ‘ d1, . . . , f

0
` ‘ d`q. Therefore u1 “ u11 if and only if f b1 “ f0

1 . Since f0
1 ‰ f1

1 , this occurs if

and only if b “ 0. It follows that, with total probability, b1 “ b and A wins the game.

It is worth noting that Theorem 4.5.1 continues to hold even if we change the definition of strong

single-key selective security to only allow queries of constraints g different from f0 and f1. In this case,

the attacker A in the proof of the theorem should select g as any constraint such that g1 “ f0
1 and g ‰ f0.
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Chapter 5

Succinct-key private constrained PRF

from functional encodings

In this chapter we propose an alternative private constrained pseudorandom function with updatable

parameters with the property of succinct constrained keys. In this construction we use functional encod-

ings and symmetric-key encryption to transform any private constrained PRF with single-key selective

security into one that has succinct keys.

5.1 Symmetric-key encryption

Symmetric-key encryption (SKE) is a basic cryptographic primitive which allows the encryption and

decryption of messages using the same key. A symmetric-key encryption scheme consists of PPT

algorithms pSetup,Enc,Decq such that:

• Setupp1λq generates a key k.

• Encpk, xq receives as input a key k and a string x and outputs a ciphertext c.

• Decpk, cq receives as input a key k and a ciphertext c and outputs a string x.

Correctness. For any string x and any key k Ð Setupp1λq, we must have Decpk,Encpk, xqq “ x.

The security definition that we will consider for SKE schemes is indistinguishability against chosen

plaintext attacks (IND-CPA), which we present next. This is a simple and relatively weak notion that

provides protection only against passive attackers, but it is sufficient for our purposes.

Definition 5.1.1 (IND-CPA). A symmetric-key encryption scheme pSetup,Enc,Decq is said to be IND-CPA

secure if in the following security game any stateful PPT adversary A has only negligible advantage, that

is,
ˇ

ˇPrrb1 “ bs ´ 1
2

ˇ

ˇ “ neglpλq.

1. The challenger generates k Ð Setupp1λq and flips a coin bÐ t0, 1u.
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2. A can ask for encryptions of strings x, to which the challenger replies with Encpk, xq. Then A sends

a pair of strings px0, x1q to the challenger.

3. The challenger sends cÐ Encpk, xbq to A.

4. The adversary A may make additional encryption queries, as in step 2, and finally it outputs a

guess b1 P t0, 1u.

There are many possibilities for a concrete LWE-based SKE scheme to use in our CPRF construc-

tion. We consider the Regev cryptosystem [Reg05], which is a public-key encryption scheme, but may

of course be seen as a symmetric-key system where the key consists of the both the public and the

secret key.

Theorem 5.1.2 ([Reg05]). Under the LWE assumption, there exists an IND-CPA secure SKE scheme,

in which a plaintext of size k can be encrypted bit by bit to form a ciphertext of size k ¨ polypλq.

5.2 Functional encodings

Functional encodings (FE) were introduced by Wee and Wichs [WW21] as a tool for a candidate indis-

tinguishability obfuscation construction. They allow a user to generate an encoding of a string x and a

short “opening” for a function f , which can be decoded together to recover fpxq. A functional encoding

scheme is a tuple pEnc,Open,Decq of PPT algorithms with the following syntax:

• Encp1λ, xq receives as input the security parameter λ and a string x and outputs an encoding c and

the randomness r used in the process.

• Openpf, x, rq receives as input a function f , a string x and randomness r. It outputs an opening d.

• Decpf, c, dq receives as input a function f , an encoding c and an opening d. It outputs a value y.

Correctness. For any string x, function f , and pc, rq Ð Encp1λ, xq, we must have

Decpf, c,Openpf, x, rqq “ fpxq.

For our construction we require an FE scheme with one-opening simulation-based (1-SIM) security,

as defined below. It is shown in [WW21] that such a scheme exists under the LWE assumption.

Definition 5.2.1 (1-SIM security). A functional encoding scheme pEnc,Open,Decq is said to be 1-SIM se-

cure if there exists a PPT simulator Sim such that, for any PPT adversary A, the distributions

tExprealA p1λquλPN and tExpidealA,Simp1
λquλPN described next are computationally indistinguishable.

• ExprealA p1λq “ px, f, c, dq, where px, fq Ð Ap1λq, pc, rq Ð Encp1λ, xq, dÐ Openpf, x, rq.

• ExpidealA,Simp1
λq “ px, f, c, dq, where px, fq Ð Ap1λq, pc, dq Ð Simp1λ, f, fpxqq.

Theorem 5.2.2 ([WW21]). Under the LWE assumption, there exists a 1-SIM secure FE scheme in which

the opening for a depth-t circuit f : t0, 1uz Ñ t0, 1uk has size polypλ, t, log kq, where λ is the security

parameter.
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5.3 Succinct-key private constrained PRF

The core idea behind this construction is to take a private CPRF that does not have succinct keys,

publish an encryption by a functional encoding scheme of its master secret key, and then give as the

new constrained key an opening for the circuit that computes the constrained key for the original CPRF.

In order to preserve the property of privacy, the constraint must be encrypted, and this encryption must

be added to the public parameters so that the user can apply the FE decryption algorithm.

Let CPRF “ pCPRF.KeyGen,CPRF.Eval,CPRF.Constrain,CPRF.ConstrainEvalq be a private constrained

PRF. We assume that the probabilistic algorithm CPRF.Constrainpppmsk, fq can be split into two proce-

dures: a probabilistic algorithm CPRF.Samplepppmskq, which generates all the randomness R neces-

sary to generate a constrained key, independently of the constraint f , and a deterministic algorithm

CPRF.Comppppmsk, f, Rq, which computes a constrained key corresponding to f using the random-

ness R. We require that generating a key with these algorithms is equivalent to generating it with

the usual constraining algorithm, that is, the outputs ck Ð CPRF.Comppppmsk, f,CPRF.Samplepppmskqq

and ckÐ CPRF.Constrainpppmsk, fq are equally distributed.

Let FE “ pFE.Enc,FE.Open,FE.Decq be a functional encoding scheme and let SKE “ pSKE.Setup,

SKE.Enc,SKE.Decq be a symmetric-key encryption system. The following algorithms constitute our

succinct-key private constrained PRF with updatable parameters SCPRF, which supports the same class

of constraints as the underlying scheme CPRF.

• SCPRF.KeyGenp1λ, 1`, 1z, 1tq: The input parameters are the security parameter λ, the maximum

description length ` of constraint functions, their input length z and their maximum depth t. To set

up the scheme, generate pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λ, 1`, 1z, 1tq, k Ð SKE.Setupp1λq

and R Ð CPRF.SampleCPRF.pppCPRF.mskq. Then compute pC, rq Ð FE.Encp1λ, pCPRF.msk, k, Rqq.

Output

msk “ pCPRF.msk, k, R, rq , pp “ pCPRF.pp,Cq

as the master secret key and the public parameters, respectively.

• SCPRF.Evalpppmsk, xq: Output y “ CPRF.EvalCPRF.pppCPRF.msk, xq.

• SCPRF.Constrainpppmsk, fq: Let h Ð SKE.Encpk, fq. Consider the following circuit Ch: on input

a tuple ps, k,Rq, it computes f “ SKE.Decpk, hq and then outputs CPRF.CompCPRF.ppps, f,Rq.

Compute d Ð FE.OpenpCh, pCPRF.msk, k, Rq, rq and output it as the constrained key for f . Output

also pp1 “ ppp, hq as the new public parameters.

• SCPRF.ConstrainEvalpp1pd, xq: Retrieve h from the parameters and compute ckÐ FE.DecpCh,C,dq.

Output y “ CPRF.ConstrainEvalCPRF.pppck, xq.
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5.4 Proof of security

In this section we prove that the private constrained PRF with updatable parameters SCPRF described

above has strong single-key selective security, as per Definition 2.3.2.

Theorem 5.4.1 (Correctness). Let CPRF be a correct constrained PRF, FE a correct functional encoding

scheme and SKE a correct symmetric-key encryption system. Then SCPRF is also correct.

Proof. Since Eval depends only on the parameters CPRF.pp, we have Evalpp1pmsk, xq “ Evalpppmsk, xq

for any x P t0, 1uz. Let f be a constraint. By the correctness of the symmetric-key encryption scheme,

SKE.Decpk, hq “ f , hence ChpCPRF.msk, k, Rq “ CPRF.CompCPRF.pppCPRF.msk, f, Rq. Therefore, by

the correctness of the functional encoding scheme, the constrained key ck computed during the al-

gorithm SCPRF.ConstrainEval is a properly generated constrained key of the CPRF scheme for the

predicate f . It follows that SCPRF.ConstrainEvalpp1pd, xq “ SCPRF.Evalpppmsk, xq holds if and only if

CPRF.ConstrainEvalCPRF.pppck, xq “ CPRF.EvalCPRF.pppCPRF.msk, xq, and the latter occurs whenever

fpxq “ 0 since CPRF is correct. Therefore SCPRF is also correct.

Theorem 5.4.2 (Pseudorandomness). Let CPRF be a constrained PRF satisfying pseudorandomness at

constrained points (as per Definition 2.2.2), FE a 1-SIM secure functional encoding scheme and SKE a

correct symmetric-key encryption system. Then SCPRF satisfies the pseudorandomness at constrained

points property of Definition 2.3.2.

Proof. Consider the following two security games, where Sim is a PPT simulator with the properties

described in Definition 5.2.1, which exists by the assumption that the functional encoding scheme FE is

1-SIM secure.

Game 0. This is the pseudorandomness security game of Definition 2.3.2 of the adversary A against

SCPRF.

Game 1. In this game, instead of computing the encoding C and the constrained key d as usual,

the challenger sets pC,dq Ð Simp1λ, Ch, ckq, where ck Ð CPRF.CompCPRF.pppCPRF.msk, f, Rq and h Ð

SKE.Encpk, fq. Game 1 is otherwise identical to Game 0.

Observe that in Game 1 we have ChpCPRF.msk, k, Rq “ ck.

Claim 5.4.2.1. If FE is a 1-SIM secure functional encoding scheme, then Game 0 and Game 1 are

computationally indistinguishable.

Proof. Let A be a PPT adversary in the experiment of distinguishing Game 0 from Game 1. At the start

of this experiment the challenger randomly chooses β Ð t0, 1u. The challenger and the adversary then

play Game 0, if β “ 0, or Game 1, if β “ 1. Finally, A outputs a guess β1 and wins if β1 “ β.

Given A we construct a PPT adversary B that distinguishes the two experiments ExprealB p1λq and

ExpidealB,Simp1
λq of Definition 5.2.1 as follows. B begins by running A, which outputs a constraint f . Then it

generates pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λq, R Ð CPRF.SampleCPRF.pppCPRF.mskq and a key
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k Ð SKE.Setupp1λq. B computes hÐ SKE.Encpk, fq and sends ppCPRF.msk, k, Rq, Chq to the challenger

as the FE input and function pair.

At this point the challenger samples β Ð t0, 1u, which determines if it will act according to the

real or simulated experiment. It sends to B a pair pC,dq, where pC, rq Ð FE.Encp1λ, pCPRF.msk, k, Rqq

and d Ð FE.OpenpCh, pCPRF.msk, k, Rq, rq, if β “ 0, or pC,dq Ð Simp1λ, Ch, ckq, if β “ 1. Here ck “

ChpCPRF.msk, k, Rq. B flips a coin bÐ t0, 1u and sends SCPRF public parameters pp1 “ pCPRF.pp,C, hq

and constrained key d to A.

For each valid query x that A makes, B responds with y “ CPRF.EvalCPRF.pppCPRF.msk, xq, if b “ 0,

or with y Ð Zp, if b “ 1. Whenever A queries a constraint g, B computes h1 Ð SKE.Encpk, gq and sends

to A the updated parameters ppp1, h1q. Finally, A outputs a guess b1 for b and a guess β1 for whether it

played Game 0 or Game 1. The output of B is β1.

Observe that when β “ 0 the game that A is playing is distributed exactly like Game 0 and when

β “ 1 it is distributed like Game 1. Therefore B has the same advantage in distinguishing ExprealB p1λq

from ExpidealB,Simp1
λq that A has in distinguishing Game 0 from Game 1. By 1-SIM security of FE, B has

negligible advantage, hence A also has negligible advantage.

�

Claim 5.4.2.2. If CPRF is pseudorandom, then any adversary in Game 1 has only negligible advantage.

Proof. Let A be an adversary against SCPRF in Game 1. We construct as follows an adversary B

against CPRF in the pseudorandomness game of Definition 2.2.2. The game begins with B running

A to receive a constraint f P t0, 1u`, which it forwards to the CPRF challenger. After receiving public

parameters CPRF.pp and a constrained key ck from the challenger, B generates k Ð SKE.Setupp1λq and

computes hÐ SKE.Encpk, fq and pC,dq Ð Simp1λ, Ch, ckq. Then B sends to A SCPRF public parameters

pp1 “ pCPRF.pp,C, hq and a constrained key d.

At this point B must be able to reply to the queries of A. Whenever A queries a point x P t0, 1uz

such that fpxq “ 1, B makes that same query to the challenger. The challenger responds with a value

y, which B forwards to A as its reply. If A asks for updated parameters for a constraint g, B computes

h1 Ð SKE.Encpk, gq and replies with ppp1, h1q. Once A halts and outputs a guess b1, B outputs b1 as well.

Observe that B wins the game against CPRF if and only if A wins Game 1 against SCPRF. By

pseudorandomness of the CPRF protocol, B has negligible advantage, hence A also has negligible

advantage in Game 1. �

Since Game 0 and Game 1 are computationally indistinguishable, it follows that the advantage of A

in Game 0 is negligible, that is, |Prrb1 “ bs ´ 1
2 | “ neglpλq in Game 0.

Theorem 5.4.3 (Constraint hiding). Let CPRF be a constrained PRF with the constraint hiding property

(as per Definition 2.2.2), FE a 1-SIM secure functional encoding scheme and SKE a IND-CPA secure

symmetric-key encryption system. Then SCPRF is constraint-hiding, as per Definition 2.3.2.
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Proof. The proof consists of the following sequence of hybrid security games, with the first and last

games being the cases b “ 0 and b “ 1 of the SCPRF constraint hiding game, respectively. We show

that each game is computationally indistinguishable from the previous one.

Game 0. This is the constraint hiding security game of Definition 2.3.2 for the SCPRF protocol, in

the case that the challenger chooses b “ 0. The game begins with the adversary A submitting two

constraints f0, f1. Then the challenger generates pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λ, 1`, 1z, 1tq

and sends public parameters pp1 “ pCPRF.pp,C, h0q and a constrained key d to A, where pC, rq Ð

FE.Encp1λ, pCPRF.msk, k, Rqq, h0 Ð SKE.Encpk, f0q, d Ð FE.OpenpCh0
, pCPRF.msk, k, Rq, rq and R Ð

CPRF.SampleCPRF.pppCPRF.mskq. A performs additional computations while being able to query points x

such that f0pxq “ f1pxq, to the which challenger replies with y “ CPRF.EvalCPRF.pppCPRF.msk, xq, and

constraint queries g, to which the challenger responds with corresponding updated parameters. We omit

the guessing step at the end of the game.

Game 1. Instead of defining C and d as in Game 0, in this game the challenger computes them as

pC,dq Ð Simp1λ, Ch0 , ck0q, where Sim is the simulator from Definition 5.2.1 for the FE scheme and

ck0 Ð CPRF.ConstrainCPRF.pppCPRF.msk, f0, Rq.

Game 2. In this game the challenger sends pp1 “ pCPRF.pp,C, h1q as public parameters and d as the

constrained key , where pC,dq Ð Simp1λ, Ch1 , ck0q, ck0 Ð CPRF.ConstrainCPRF.pppCPRF.msk, f0, Rq and

h1 Ð SKE.Encpk, f1q.

Game 3. In this game the challenger sends pp1 “ pCPRF.pp,C, h1q as public parameters and d as the

constrained key , where pC,dq Ð Simp1λ, Ch1
, ck1q, ck1 Ð CPRF.ConstrainCPRF.pppCPRF.msk, f1, Rq and

h1 Ð SKE.Encpk, f1q.

Game 4. This is the constraint hiding security game of Definition 2.2.2 for the SCPRF protocol, in the case

that the challenger chooses b “ 1. The difference between Games 3 and 4 is that in Game 3 the vari-

ables C and d are generated as pC,dq Ð Simp1λ, Ch1
, ck1q, while in Game 4 they are given by pC, rq Ð

FE.Encp1λ, pCPRF.msk, k, Rqq and d Ð FE.OpenpCh1 , pCPRF.msk, k, Rq, rq. Here h1 Ð SKE.Encpk, f1q

and ck1 Ð CPRF.ConstrainCPRF.pppCPRF.msk, f1, Rq.

Claim 5.4.3.1. If FE is a 1-SIM secure functional encoding scheme, then Game 0 and Game 1 are

computationally indistinguishable.

Proof. Let A be a PPT adversary in the experiment of distinguishing Game 0 from Game 1. At the start

of this experiment the challenger randomly chooses β Ð t0, 1u. The challenger and the adversary then

play Game 0, if β “ 0, or Game 1, if β “ 1. Finally, A outputs a guess β1 and wins if β1 “ β.

Given A we construct a PPT adversary B that distinguishes the experiments ExprealB p1λq and

ExpidealB,Simp1
λq of Definition 5.2.1 as follows. B begins by simulating A to obtain a pair of constraints f0, f1.

Then it generates pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λq, k Ð SKE.Setupp1λq and computes h0 Ð

SKE.Encpk, f0q. B samples R Ð CPRF.SampleCPRF.pppCPRF.mskq and sends ppCPRF.msk, k, Rq, Ch0
q to

the challenger as the FE input and function pair.
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At this point the challenger samples β Ð t0, 1u, which determines if it will act according to the

real or simulated experiment. It sends to B a pair pC,dq, where pC, rq Ð FE.Encp1λ, pCPRF.msk, k, Rqq

and d Ð FE.OpenpCh0 , pCPRF.msk, k, Rq, rq, if β “ 0, or pC,dq Ð Simp1λ, Ch0 , ck0q, if β “ 1. Here

ck0 “ Ch0
pCPRF.msk, k, Rq. B sends SCPRF public parameters pCPRF.pp,C, h0q and constrained key d

to A.

For each valid query x that A makes, B responds with y “ CPRF.EvalCPRF.pppCPRF.msk, xq. Whenever

A queries a constraint g, B computes h1 Ð SKE.Encpk, gq and sends to A the updated parameters

ppp1, h1q. When A halts and outputs a guess β1, B outputs β1 as well.

Observe that when β “ 0 the game that A is playing is distributed like Game 0 and when β “ 1

it is distributed like Game 1. Therefore B has the same advantage in distinguishing ExprealB p1λq from

ExpidealB,Simp1
λq that A has in distinguishing Game 0 from Game 1. By 1-SIM security of FE, B has negligible

advantage, hence A also has negligible advantage.

�

Claim 5.4.3.2. If SKE is an IND-CPA secure symmetric-key encryption scheme, then Game 1 and Game

2 are computationally indistinguishable.

Proof. Let A be a PPT adversary that distinguishes Game 1 from Game 2. We construct a PPT adver-

sary B for the IND-CPA security game against SKE with the same advantage as A.

B starts by running A to obtain two constraints, f0 and f1, which it sends to the IND-CPA challenger

as the challenge plaintexts. After generating k Ð SKE.Setupp1λq and choosing β Ð t0, 1u, the chal-

lenger sends h Ð SKE.Encpk, fβq to B. Then B generates pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λq,

R Ð CPRF.SampleCPRF.pppCPRF.mskq, and it computes ck0 “ CPRF.ConstrainCPRF.pppCPRF.msk, f0, Rq,

pC,dq Ð Simp1λ, Ch, ck0q. It sends public parameters pCPRF.pp,C, hq and a constrained key d to A.

In the query phase, B replies with y “ CPRF.EvalCPRF.pppCPRF.msk, xq for each string x submitted by

A. Whenever A queries a constraint g, B forwards g to the SKE challenger as an encryption query and

receives a ciphertext h1. Then it sends the updated parameters ppp1, h1q to the adversary A . Finally, A

outputs a guess β1, with β1 “ 0 and β1 “ 1 corresponding to Game 1 and Game 2, respectively. The

output of B is also β1.

The game that A plays against B is distributed like Game 1 if β “ 0 and like Game 2 if β “ 1. It

follows that A and B have the same advantage in their respective games. By IND-CPA security of SKE,

the advantage of B is a negligible function of λ, hence so is the advantage of A.

�

Claim 5.4.3.3. If CPRF is a constrained PRF satisfying the constraint hiding property, then Game 2 and

Game 3 are computationally indistinguishable.

Proof. Let A be a PPT adversary that distinguishes Game 2 from Game 3. We show that there exists a

PPT adversary B for the constraint hiding security game of Definition 2.2.2 against CPRF with the same

advantage as A.
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The adversary B operates as follows. It begins by requesting constraints f0, f1 from A, which it then

forwards to the challenger. After generating pCPRF.msk,CPRF.ppq Ð CPRF.KeyGenp1λq and choosing

β Ð t0, 1u, the challenger sends ck Ð CPRF.ConstrainCPRF.pppCPRF.msk, fβq to B. At this point B

generates k Ð SKE.Setupp1λq and computes h1 Ð SKE.Encpk, f1q, pC,dq Ð Simp1λ, Ch1
, ckq. B then

sends public parameters pCPRF.pp,C, h1q and constrained key d to A.

Whenever A queries a point x, B forwards that query to the challenger and then forwards the replied

value y back to A. If A queries a constraint g, B computes h1 Ð SKE.Encpk, gq and replies with the

updated parameters ppp1, h1q. After the query phase, A outputs a guess β1, with β1 “ 0 and β1 “ 1

corresponding to Game 2 and Game 3, respectively. B also outputs β1.

Observe that when β “ 0 the game that A plays has the correct distribution of Game 2, and when

β “ 1 it has the distribution of Game 3. Consequently, the advantage of B in distinguishing a CPRF

constrained key for f0 from a constrained key for f1 is equal to the advantage of A in distinguishing

Game 2 from Game 3. By the security of CPRF, both B and A have negligible advantage.

�

Claim 5.4.3.4. If FE is a 1-SIM secure functional encoding scheme, then Game 3 and Game 4 are

computationally indistinguishable.

The proof of Claim 5.4.3.4 is analogous to the proof of Claim 5.4.3.1, with f1 in place of f0. We have

shown that the cases b “ 0 and b “ 1 in the constraint hiding game of Definition 2.2.2, corresponding to

Game 0 and Game 4, respectively, are computationally indistinguishable. Therefore the SCPRF protocol

is constraint-hiding.

5.5 Size of constrained keys

In this section we consider our private constrained PRF with updatable parameters SCPRF from Section

5.3 to be instantiated with the following schemes as building blocks:

• The BTVW private constrained PRF [BTVW17] in place of CPRF;

• The functional encoding scheme of Wee and Wichs [WW21] in place of FE;

• The Regev cryptosystem [Reg05] in place of SKE, with encryption and decryption performed bit

by bit.

Observe that the algorithm BTVW.Constrain (see Section 3.4) can easily be split into a probabilistic

part BTVW.Sample and a deterministic part BTVW.Comp, as described next.

• BTVW.Samplepppmskq: Sample vectors e0, e1, . . . , e` Ð χpn`1q log q and matrices R1, . . . ,R` Ð

t0, 1upn`1q log qˆpn`1q log q. Output R “ pe0, e1, . . . , e`,R1, . . . ,R`q.
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• BTVW.Comppppmsk, f, Rq: Compute

Ψi “

¨

˝

B

sTB` eT0

˛

‚Ri ` fiG

for all i P r`s and let pψ1, . . . , ψLq be the binary representation of Ψ “ rΨ1 | . . . |Ψ`s. Compute also

cTj “ sTpBj ´ ψjGq ` eTj for all j P rLs and output ck “ pΨ, tcjujPrLsq.

Lemma 5.5.1. The depth of the circuit Ch featured in the SCPRF.Constrain algorithm is independent

from the constraint description length.

Proof. We denote by ` the size of the description of the constraint f . Recall that Ch receives as input

ps, k,Rq and its first step is to compute f “ SKE.Decpk, hq. Since each of the ` bits of the description

of f was encrypted separately to obtain h, the ` blocks of h can be decrypted in parallel. Since the

decryption of each block is independent from `, this step can be performed in depth polypλq.

The second and final step is to compute ck “ CPRF.Compps, f,Rq. If we observe the description

of the BTVW.Comp algorithm above, we see that the matrices Ψ1, . . . ,Ψ` can be computed in parallel,

resulting in an additional depth of polypλq, independently from `. We may assume that these matrices

are represented column by column, in which case the binary representation of Ψ consists simply of

the binary representations of Ψ1, . . . ,Ψ`. Finally, the L “ ` polypλq vectors c1, . . . , cL are individually

independent from ` and can be computed in parallel, thus adding depth polypλq to our circuit. The total

depth of Ch is therefore polypλq and independent from `.

Lemma 5.5.2. The size of the opening d in the SCPRF.Constrain algorithm is polypλ, log `q, where ` is

the constraint description length.

Proof. By Theorem 5.2.2, the size of the opening is polypλ, t, log kq, where t is the depth of the circuit Ch
and k is the size of its output. By Lemma 5.5.1, t “ polypλq. On the other hand, since the output of Ch
is a BTVW constrained key, we have k “ |pΨ, c1, . . . , cLq| “ Op`n3 log4 qq “ Op` polypλqq. We conclude

that |d| “ polypλ, log `q.

Since the size of the constrained keys is polypλ, log `q, we conclude that there exists a polynomial pp¨q

such that, for all polynomial values of `, the key size is asymptotically bounded by ppλq, independently

of `. We summarize the results of this chapter in the following theorem.

Theorem 5.5.3. Consider the SCPRF construction from Section 5.3 instantiated with the private CPRF

of [BTVW17], the FE scheme of [WW21] and the SKE scheme of [Reg05]. Under the LWE assumption,

SCPRF is a strong single-key private CPRF with updatable parameters in which the constrained keys

are succinct.
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Chapter 6

Conclusions

Modern cryptography encompasses a multitude of different protocols designed for varied purposes. In

this thesis we study a very particular system with interesting applications, which is the private con-

strained PRF. We focus on the aspect of the size of constrained keys and on the question of having it

be independent from the constraints. We partially solve this problem through the introduction of CPRFs

with updatable parameters.

Our main contribution is a succinct-key private constrained PRF with updatable parameters. Of the

two constructions we presented, the second appears to be superior due to its simplicity and stronger

security, but the first may also hold some value in practice. Both are based on learning with errors, a

standard cryptographic assumption which also provides quantum resistance.

An idea for possible future work is to attempt to obtain variants with succinct keys for other types of

private CPRFs, namely with different security requirements (e.g. adaptive security, multi-key security) or

for more restricted classes of constraints, or for similar protocols, such as private programmable PRFs

[BLW17]. At first glance, our second proposed construction, featuring functional encodings, appears

to have potential in this regard. Since it uses a generic private CPRF, it could perhaps be used to

upgrade any private CPRF scheme into a scheme that has succinct keys and a similar level of security.

Moreover, we have shown that it is secure when the updated parameters are adversarially chosen, so it

could potentially even achieve this when considering multi-key security. However, some problems would

certainly arise depending on the security definition. For instance, the technique used in our security

proof fails if we consider adaptive instead of selective security, as the encoding C would have to be

generated before knowing the constraint chosen by the adversary.

Another very interesting project would be to investigate the possibility of having private CPRFs with

succinct keys without resorting to a generalized definition such as ours. The reason why we found the

standard definition insufficient and considered a broader one is that, in the primitives we currently have

which restrict access to encrypted data and have short keys (such as ABE and FE), in order to use a

key for decryption one needs to know the circuit with which the key was generated, and this depends

on the constraint. This is not a problem for non-private CPRFs, because in their case the constraint is

assumed to be known by the holder of the constrained key but is not considered to be part of the key.
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The user has therefore access to additional information that is not reflected in the size of the key. Our

solution mimics this situation by placing the additional information in the public parameters. We are very

curious as to whether or not achieving succinct keys with the usual definition is possible.

40



Bibliography

[BGG`14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko, Gil Segev,

Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-homomorphic encryption,

arithmetic circuit ABE and compact garbled circuits. In EUROCRYPT, pages 533–556, 2014.

[BGI`12] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan,

and Ke Yang. On the (im)possibility of obfuscating programs. J. ACM, 59(2), 2012.

[BGI14] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom

functions. In PKC, pages 501–519, 2014.

[BKM17] Dan Boneh, Sam Kim, and Hart Montgomery. Private puncturable PRFs from standard lattice

assumptions. In EUROCRYPT, pages 415–445, 2017.

[BLP`13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé. Classical

hardness of learning with errors. In STOC, pages 575–584, 2013.

[BLW17] Dan Boneh, Kevin Lewi, and David J. Wu. Constraining pseudorandom functions privately.

In PKC, 2017.

[BTVW17] Zvika Brakerski, Rotem Tsabary, Vinod Vaikuntanathan, and Hoeteck Wee. Private con-

strained PRFs (and more) from LWE. In TCC, pages 264–302, 2017.

[BV15] Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from stan-

dard lattice assumptions - or: How to secretly embed a circuit in your PRF. In TCC, pages

1–30, 2015.

[BW13] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications.

In ASIACRYPT, pages 280–300, 2013.

[CC17] Ran Canetti and Yilei Chen. Constraint-hiding constrained PRFs for NC1 from LWE. In

EUROCRYPT, pages 446–476, 2017.

[CHN`16] Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, , and Daniel Wichs.

Watermarking cryptographic capabilities. In STOC, pages 1115–1127, 2016.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178,

2009.

41



[GGH`13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.

Candidate indistinguishability obfuscation and functional encryption for all circuits. In FOCS,

pages 40–49, 2013.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J.

ACM, 33(4):792–807, 1986.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learning with

errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO, pages 75–

92, 2013.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for

circuits. In STOC, pages 545–554, 2013.

[KPTZ13] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Del-

egatable pseudorandom functions and applications. In CCS, pages 669–684, 2013.

[KW19] Sam Kim and David J. Wu. Watermarking PRFs from lattices: Stronger security via ex-

tractable PRFs. In CRYPTO, pages 335–366, 2019.

[MP12] Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller.

In EUROCRYPT, pages 700–718, 2012.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem. In

Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pages 333–342,

2009.

[Pei16] Chris Peikert. A decade of lattice cryptography. In Foundations and Trends in Theoretical

Computer Science, 2016.

[PS18] Chris Peikert and Sina Shiehian. Privately constraining and programming PRFs, the LWE

way. In PKC, pages 675–701, 2018.

[QWZ18] Willy Quach, Daniel Wichs, and Giorgos Zirdelis. Watermarking PRFs under standard as-

sumptions: Public marking and security with extraction queries. In TCC, pages 669–698,

2018.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In

Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pages 84–93,

2005.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on

a quantum computer. In SIAM J. Comput., pages 1484–1509, 1997.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages

457–473, 2005.

42



[WW21] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling. In

EUROCRYPT, pages 127–156, 2021.

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. Collusion resistant watermarkable

prfs from standard assumptions. In CRYPTO, pages 590–620, 2020.

43


	Acknowledgments
	Resumo
	Abstract
	List of Abbreviations
	Introduction
	Constrained pseudorandom functions
	Pseudorandom functions
	Constrained pseudorandom functions
	Updatable parameters
	Applications
	Database with restricted access
	Watermarking


	The BTVW private constrained PRF
	Lattices and learning with errors
	Homomorphic evaluation over matrices
	Fully homomorphic encryption
	LWE-based private constrained PRF

	Succinct-key private constrained PRF from attribute-based encryption
	Attribute-based encryption
	Succinct-key private constrained PRF
	Proof of security
	Size of constrained keys
	Separation between weak and strong security

	Succinct-key private constrained PRF from functional encodings
	Symmetric-key encryption
	Functional encodings
	Succinct-key private constrained PRF
	Proof of security
	Size of constrained keys

	Conclusions
	Bibliography

